Understanding Anadigm®
Configurable Analog Modules (CAMs)
Agenda

- What is a CAM?
- Configuring and Placing CAMs
- Other Considerations
- CAMs Available in the Anadigm Standard Library
What is a Configurable Analog Module (CAM)?

- Circuit building blocks abstracted to a functional level that can be manipulated in AnadigmDesigner®2
- A complex circuit can be implemented in a “chip” simply by selecting, configuring, placing and wiring CAMs
- Improved speed and ease of circuit design
AnadigmDesigner2® CAMs

- Very dynamic, powerful yet easy to use
 - Multiple circuit topologies – CAM knows how to make what you ask for
 - Dynamic user interface – options and limits can change
 - Allows user to push the limits of the CAM
 - Constrains the user to legal configurations

- Expanded CAM documentation explains the features
Selecting a CAM

- Library: ANx20 Standard
- Name: FilterBiquad
- Description: Biquadratic Filter
- Documentation
Configuring the CAM - Clocks

- **Set the clock(s)**
 - Spinners associate CAM clocks (CLOCKA) with chip clocks (Clock 0) and show the frequency of that chip clock
 - Chip clock frequencies are set in the “Chip Settings” dialog box
- **All CAMs in a signal path should use the same chip clock for the analog clock (CAM CLOCKA)**
- **Some CAM parameters are clock dependent (filter corner frequency)**
 - These CAMs should be reconfigured if the clock frequencies are changed
- **CAMs with multiple clocks contain instructions about their relation**
• CAM Options
 – Option settings control circuit configuration. This is reflected in the symbol. Options and parameters may also change
 – Options may be gray due to incompatible combinations or unavailable resources
Configuring the CAM - Parameters

- **Parameter Names**
 - May include units

- **Desired Value**
 - Entered by the user

- **Parameter Limits**
 - Values will be restricted

- **Realized Value**
 - What was possible for this combination of desired values
Parameters - Quantization and Error

- Realized values show the implementation of the parameter based on ratios of programmable capacitor banks which are quantized

 \[
 \frac{6 \text{ unit caps}}{233 \text{ unit caps}} = 0.02575
 \]

- Actual measured values can have error in addition to the quantization of the realized value

 \[
 Gain_{\text{Realized}} = 0.02575
 \]
 \[
 Gain_{\text{Measured}} = 0.0259 \Rightarrow 0.6\% \text{ error}
 \]
Parameters - Interrelation

CAM Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Limits</th>
<th>Realized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain 1 (UpperInput)</td>
<td>6</td>
<td>0.0100 To 6.55</td>
<td>6.0</td>
</tr>
<tr>
<td>Gain 2 (LowerInput)</td>
<td>0.0257</td>
<td>0.0235 To 100</td>
<td>0.0256</td>
</tr>
</tbody>
</table>

- **Limits are dynamic.**: Changing desired values can also change the limits.
 - If Gain 1 = 6.0
 Gain 2 cannot be less than 0.0235
 - If Gain 2 = .0257
 Gain 1 cannot be greater than 6.55

\[
\frac{234 \text{ unit caps}}{39 \text{ unit caps}} = 6.0 \quad \frac{1 \text{ unit caps}}{39 \text{ unit caps}} = 0.02564
\]

- Realized values are based on the combination of capacitor ratios. Changing one desired value can change multiple realized values.
Configuring the CAM - LUT

- Parameter entry to set output voltages
 - Limits
 - Input voltage range that will trigger this output
 - Desired value
 - Realized value

Enter voltage transfer function profile by pressing the Lookup Table button.

Parameter entry to set output voltages:
- Limits
- Input voltage range that will trigger this output
- Desired value
- Realized value
Configuring the CAM - Finishing

Read any notes for help with configuration

- Documentation
 - Online help about this CAM
- Cancel
 - Discard all changes
- OK
 - Accept all changes
Online CAM Documentation

- Anadigm approved CAMs contain information about CAM construction and proper usage
 - Details about each CAM option
 - Details about each CAM parameter
 - Design Equations
 - Circuit Diagrams
 - Switch Phasing
 - Output Characteristics
- Some include additional design notes with information about special features of that CAM
Placing and Wiring CAMs

- Place the CAM within the chip borders
 - Green warning marker indicates the CAM cannot be dropped on top of something
 - Red warning marker indicates that available resources are not sufficient to implement the CAM

- Draw wires between the CAM contacts
 - Only legal connections will be allowed

- Chips can be connected for simulation
Other Considerations – Clock Phases

- Each clock has two non-overlapping phases
- Phase symbol on a CAM input shows an input that samples only on that phase
 - $\Delta \phi$ indicates that the sampling phase changes during operation
- Phase symbol on a CAM output shows the output should be sampled on that phase
- **Warning**: a phased output can be safely connected only to a similarly phased input
- Always see the CAM documentation for details on input/output characteristics
Other Considerations – Clock Delay

- CAMs may have signal delay due to the timing of clocked switches. This is not the same as filter phase delay.
- Clock delay can often be neglected if the clock frequency is adequately higher than the signal frequency.

Example – 10 kHz signal CAM has half clock cycle delay
 - With 50 kHz clock
 36 degree delay (possibly significant)
 - With 1 MHz clock
 1.8 degree delay (probably negligible)

- Clock delay is not shown by symbol alone
- Always see the CAM documentation for details on input/output characteristics
CAM Files

.cam File
- Primary CAM file
- ASCII based
- Read directly by AnadigmDesigner2
- Strictly formatted, keyword driven with very little error checking

 Name, Version, User Interface Control, Circuit Definition, Parameter Calculation, Symbol, Simulation equations, CCODE, etc.

.chm File
- CAM Documentation or Help file
- Compiled HTML
- Referenced and displayed by AnadigmDesigner™
Standard Library CAMs – Gain Stages

- **GainHalf**
 - Half-cycle

- **GainHold**
 - Inverting only

- **GainInv**
 - Continuous Time
Standard Library CAMs – Rectifiers

- **RectifierFilter**
 - Full Wave/Half Wave
 - Inverting/non-inverting

- **RectifierHalf**
 - Full Wave/Half Wave
 - Inverting/non-inverting

- **RectifierHold**
 - Half Wave Inverting only
Standard Library CAMs – Summing

- **SumInv**
 - Up to three inputs

- **SumDiff (SumHalf)**
 - Up to four inputs
 - Add or subtract since input branches can be inverting or non-inverting
Standard Library CAMs – Filters

- **FilterBilinear** – One pole
 - Low Pass/High Pass/All Pass
- **FilterBiquad** – Two poles
 - Low Pass/High Pass/Band Pass/Band Stop
 - Automatically chooses from multiple circuit topologies

Some other CAMs use a low pass bilinear filter as part of another function (RectifierFilter)
Standard Library CAMs – Math

- **Differentiator**
 - Output voltage slews – see documentation

- **Integrator**
 - Optional reset
Standard Library CAMs – Multiplier

- **Multiplier**
 - Uses SAR (Input Y is quantized)
 - Subject to internal reference voltage error
 - Optional sample and hold on input X to equalize sampling time of two inputs (uses chip resources)
Standard Library CAMs – LUT

- **PeriodicWave**
 - Half-cycle/Output Hold
 - Uses LUT to generate a user-defined periodic sequence of output voltages
 - Documentation has help with loading the LUT

- **TransferFunction**
 - Half-cycle/Output Hold
 - Uses the SAR and LUT to perform A/D conversion on the input and generate the appropriate user-defined output voltage
Standard Library CAMs - Other

- Comparator
 - Single/Dual Input
 - Variable Reference
- Hold – Sample and hold
- OscillatorSine
 - Subject to internal reference voltage error
- Voltage (+/- 3 VDC)
 - Subject to internal reference voltage error